PUBLICATIONS

Publications

On the cover

PUBLICATIONS LIST

69) Juan José Tarrío, Prof. Berta Fernández,Prof. Emilio Quiñoá,Prof. Félix Freire*. The Role of the Degree of Polymerization in the Chiroptical Properties of Dynamic Asymmetric Poly(diphenylacetylene)s. The Journal of Materials Chemistry C, 2023, DOI: https://doi.org/10.1039/D3TC01419C (HOT PAPER)Juanjo TOC

68) María Lago, Magdalena Cid, Emilio Quiñoá, Félix Freire.* Dynamic Axial-to-Helical Communication Mechanism in Poly[(allenylethynylenephenylene)acetylene]s under External Stimuli. Angewandte Chemie International Edition, 2023, 62, e2023003329. (VIP PAPER)

maria TOC

67) Francisco Rey-Tarrío, Rafael Rodríguez, Emilio Quiñoá, and Félix Freire.* Photostability and Dynamic HelicalBehavior in Chiral Poly(phenylacetylene)s with a Preferred Screw-Sense. Nature Communications, 2023, Accepted article NCOMMS-22-46378A

Fran TOC

66) Rafael Rodríguez, Elena Rivadulla, Emilio Quiñola, and Félix Freire.* Diastereomeric multi-chiral pendant groups:Their key role in stimuli-responsive polymeric responses. Chirality, 2023, 35, 172-177.

Elena Toc copy

65) Nuñez-Martínez, Quiñoá, E.; Freire, F.* Chiroptical and colorimetric switches based on helical polymer-metalnanocomposites prepared via redox metal translocation of helical polymer metal complexes. Nanoscale, 2022, 14, 13066-13072

MANU-NANO

64) Rafael Rodríguez, Elena Rivadulla, Manuel Fernández-Míguez, Berta Fernández, Emilio Quiñoá, Félix Freire.* Full Control of the Chiral Overpass Effect in Helical Polymers: P/M Screw Sense Induction by Remote Chiral CentersAfter Bypassing the First Chiral Residue. Angewandte Chemie International Edition, 2022, 61, e202209953.

ELENA

63) Francisco Rey-Tarrío, Santiago Guisán_Ceinós, Juan M. Cuerva, Delia Miguel, María Ribagorda, Emilio Quiñoá, Félix Freire.* Photostability and Dynamic Helical Behavior in Chiral Poly(phenylacetylene)s with a Preferred Screw-Sense. Angewandte Chemie International Edition, 2022, 61, e202207623

FRAN-SULF

62) Juan José Tarrío,Dr. Rafael Rodríguez,Prof. Berta Fernández,Prof. Emilio Quiñoá,Prof. Félix Freire*. “Dissymmetric Chiral Poly(diphenylacetylene)s: Secondary Structure Elucidation and Dynamic Luminescence”. Angew. Chem.Int. Ed. 2022, 61, e20211507 (HOT PAPER, FRONT COVER)

JUANJO

61) Manuel Núñez-Martínez,Sandra Arias,Julián Bergueiro,Emilio Quiñoá,Ricardo Riguera,Félix Freire*. “The Role of Polymer–AuNP Interaction in the Stimuli-Response Properties of PPA–AuNP Nanocomposites”. Macromol. Rapid Commun.2022, 43, 2100616 (BACK COVER)

Description unavailable

60) Lafayette N. J. de Windt, Zulema Fernández, Manuel Fernández-Míguez, Félix Freire,* and Anja R. A. Palmans. Elucidating the Supramolecular Copolymerization of N- and C- Centered Benzene-1,3,5-Tricarboxamides: The Role of Parallel and Antiparallel Packing of Amide Groups in the Copolymer Microstructure. Chem.Eur. J. 2022, 28, e2021036 (VIP)

Description unavailable

59) Zulema Fernández, Berta Fernández, Emilio Quiñoá, Ricardo Riguera and Félix Freire.* “Merging Supramolecular and Covalent Helical Polymers: Four Helices Within a Single Scaffold”. J. Am. Chem. Soc. 2021, 143, 49, 20962–20969

58) Leiras, S.; Suárez-Picado, E.; Quiñoá, E.; Riguera, R.; Freire, F.* “Tuning the helical sense and elongation of polymers through the combined action of the two components of tetraalkylammonium-anion salts.Giant, 2021, 7, 100068

GIANT copia

57) Nuñez-Martínez, M.; Arias, S.; Quiñoá, E.; Riguera, R.; Freire, F.* “Dynamic Chiral PPA–AgNP Nanocomposites: Aligned Silver Nanoparticles Decorating Helical Polymers” Chem. Mater. 2021,DOI:10.1021/acs.chemmater.1c00805 

manu cm

56) Zulema Fernández, Berta Fernández, Emilio Quiñoá and Félix Freire.* “The Competitive Aggregation Pathway of an Asymmetric Chiral Oligo(p‐phenyleneethynylene) Towards the Formation of Individual P and M Supramolecular Helical Polymers”. Angew. Chem. Int. Ed., 2020, 133, 10007-10012

TOC Zulema

55) Francisco Rey-Tarrío, Rafael Rodríguez, Emilio Quiñoá, Ricardo Riguera and Félix Freire.* “Photochemical Electrocyclization of Poly(phenylacetylene)s: Unwinding Helices to Elucidate their 3D‐Structure in Solution”. Angew. Chem. Int. Ed., 2020, 60, 8095-8103

54) Katherine Cobos, Rafael Rodríguez, Emilio Quiñoá, Ricardo Riguera and Félix Freire.* “From Sergeants and Soldiers to Chiral Conflict Effects in Helical Polymers by Acting on the Conformational Composition of the Comonomers”. Angew. Chem. Int. Ed., 2020, 59, 23724-23730.

53) Zulema Fernández, Berta Fernández, Emilio Quiñoá, Ricardo Riguera and Félix Freire.* Chiral Information Harvesting in Helical Poly(acetylene) Derivatives Using Oligo(p-phenyleneethynylene)s as Spacers. Chemical Science, 2020 ,11, 7182-7187.

52) Katherine Cobos, Rafael Rodríguez, Olalla Domarco, Berta Fernández,  Emilio Quiñoá, Ricardo Riguera and Félix Freire.* “Polymeric Helical Structures à la Carte by Rational Design of Monomers” Macromolecules, 2020, 53, 3182-3193.

Abstract Image

51) Rodríguez, R.; Suárez-Picado, E.; Quiñoá, E.; Riguera, R.; Freire, F.* “Stimuli‐responsive Macromolecular Gear: Interlocking Dynamic Helical Polymers with Foldamers” Angew. Chem. Int. Ed., 2020, 59, 8616-8622..

50) Palomo, L.; Rodríguez, R.; Medina, S.; Quiñoá, E.; Casado, J.; Freire, F.*, Ramírez, J. “Raman Optical Activity (ROA) as a New Tool to Elucidate the Helical Structure of Poly(phenylacetylene)s” Angew. Chem. Int. Ed., 2020, 59, 9080-9087.

49) Bergueiro, J.; Nuñez-Martínez, M.; Arias, S.; Quiñoá, E.; Riguera, R.; Freire, F.* “Chiral gold–PPA nanocomposites with tunable helical sense and morphology” Nanoscale Horiz., 2020, 5, 495-500.

48) Suárez-Picado, E.; Quiñoá, E.; Riguera, R.; Freire, F.* “Chiral Overpass Induction in Dynamic Helical Polymers Bearing Pendant Groups with Two Chiral Centers” Angew. Chem. Int. Ed., 2020, 59, 4537-4543.

47) Alzubi, M.; Arias, S.; Rodríguez, R.; Quiñoá, E.; Riguera, R.; Freire, F.* “Chiral Conflict as a Method to Create Stimuli‐Responsive Materials Based on Dynamic Helical Polymers” Angew. Chem. Int. Ed., 2019, 58, 13365-13369.

46) Mayu Fukuda, Rafael Rodríguez, Zulema Fernández, Tatsuya Nishimura, Daisuke Hirose, Go Watanabe, Emilio Quiñoá, Félix Freire,* Katsuhiro Maeda.* “Macromolecular Helicity Control of Poly(phenyl isocyanate)s with Single Stimuli-Responsive Chiral Switch”. Chem. Commun., 2019, 55, 7906-7909.

45) Daisuke Hirose, Asahi Isobe, Emilio Quiñoá, Félix Freire,* Katsuhiro Maeda.* “Three-State Switchable Chiral Stationary Phase Based on Helicity Control of an Optically Active Poly(phenylacetylene) Derivative by Using Metal Cations in the Solid State”. Journal of the American Chemical Society, 2019,141, 8592-8598

44) Rafael Rodríguez, Emilio Quiñoá, Ricardo Riguera and Félix Freire.* “Helical Colorimetric Sensors: Stimuli‐Directed Colorimetric Interconversion of Helical Polymers Accompanied by a Tunable Self‐Assembly Process” Small, 2019, 15, 1970070 (Back cover).

43) Berta Fernández, Rafael Rodríguez, Emilio Quiñoá, Ricardo Riguera and Félix Freire.* “Decoding the ECD Spectra of Poly(phenylacetylene)s: Structural Significance” ACS Omega, 2019, 4, 5233-5240.

42) Esteban Suárez, Emilio Quiñoá, Ricardo Riguera and Félix Freire.* “Poly(phenylacetylene) amines: A general route to water soluble helical polyamines”  Chemistry of Materials, 2018, 30, 6908-6914.

41) Katherine Cobos, Emilio Quiñoá, Ricardo Riguera and Félix Freire.* “Chiral to chiral communication in Polymers: A unique approach to Control both Helical Sense and Chirality at the periphery”  Journal of the American Chemical Society, 2018,140, 12239-12246. 

JACS_Kate

40) Rafael Rodríguez, Emilio Quiñoá, Ricardo Riguera and Félix Freire.* Sequential Induction of Chirality in Helical Polymers: from the Stereocenter to the Achiral Solvent” , The Journal of Physical Chemistry Letters, 2018, 9, 2266-2270.

39) Rafael Rodríguez, Emilio Quiñoá, Ricardo Riguera and Félix Freire.* “Multistate Chiroptical Switch Triggered by Stimuli-Responsive Chiral Teleinduction”, Chemistry of Materials, 2018, 30, 2493-2497.

38) Berta Fernández, Rafael Rodríguez, Emilio Quiñoá, Ricardo Riguera and Félix Freire.* “Predicting the Helical Sense of Poly(phenylacetylene)s from their Electron Circular Dichroism Spectra.” Angewandte Chemie2018, 57, 3666-3670.

37)  Arias, S.; Rodríguez, R.; Quiñoá, E.; Riguera, R.; Freire, F.* “Chiral Coalition in Helical Sense Enhancement of Copolymers: The Role of the Absolute Configuration of Comonomers”  J. Am. Chem. Soc., 2018, 140, 667-674.

36) Arias, S.; Freire, F.*; Calderón, M.; Bergueiro, J. “Unexpected Chiro-Thermoresponsive Behavior of Helical Poly(phenylacetylene)s Bearing Elastin-Based Side Chains.” Angewandte Chemie2017, 56, 11420-11425.

35)  Rodríguez, R.;Arias, S.; Quiñoá, E.; Riguera, R.; Freire, F.*  “The role of the secondary structure of helical poly(phenylacetylene)s in the formation of nanoparticles from polymer–metal complexes (HPMCs)” Nanoscale, 2017,9, 17752-17757

34) Arias, S.; Núñez-Martínez, M.; Quiñoá, E.; Riguera, R.; Freire, F.* “A general route to chiral nanostructures from helical polymers:: P / M switch via dynamic metal coordination.” Polymer Chemistry2017, 8, 3740-3745

33) Arias, S.; Núñez-Martínez, M.; Quiñoá, E.; Riguera, R.; Freire, F.* Simultaneous Adjustment of Size and Helical Sense of Chiral Nanospheres and Nanotubes Derived from Axially Racemic Poly(phenyl acetylene)s. Small, 2017, 13,  1602398.

32) Alzubi, M.; Arias, S.; Quiñoá, E.; Riguera, R.; Freire, F.* “Multipodal dynamic coordination involving cation-π interactions to control the structure of helical polymers” Chemical Communications, 2017, 53,  8573-8576.

31) Freire, F.*; Quiñoá, E.; Riguera, R.  “Chiral nanostructure in polymers under different deposition conditions observed using atomic force microscopy of monolayers: poly(phenylacetylene)s as a case study” Chemical Communications, 2017, 53,  481-492.

30) Rafael Rodríguez, Emilio Quiñoá, Ricardo Riguera and Félix Freire. “Architecture of Chiral Poly(phenyl acetylene)s: From Compressed/Highly Dynamic to Stretched/Quasi-Static Helices”.  J. Am. Chem. Soc., 2016, 138, 9260-9268. 

29) Rodriguez, R.; Ignés-Mullol, J.; Sagués, F.; R., Quinoa, E.; Riguera, R.; Freire, F.* Helical Sense Selective Domains and Enantiomeric Superhelices Generated by Langmuir-Schaefer Deposition of an Axially Racemic Chiral Helical Polymer. Nanoscale, 2016, 2016, 8, 3362-3367. (HOT ARTICLE)

28) Arias, S.; Berguerio, J.; Freire, F.*; Quiñoá, E.; Riguera, R. Chiral Nanostructures from Helical Copolymer–Metal Complexes: Tunable Cation–π Interactions and Sergeants and Soldiers Effect. Small, 201612, 238-244.

27) Freire, F.*; Quiñoá, E.; Riguera, R. “Supramolecular Assemblies from Poly(phenylacetylene)s.” Chemical Reviews, 2016116, 1242-1271.

26) Arias, S.; Quiñoá, E.; Riguera, R.; Freire, F.* “The leading role of cation–π interactions in polymer chemistry: the control of the helical sense in solution.” Polymer Chemistry2015, 6, 4725-4733.

25) Leiras, S.; Freire, F.*; Quiñoá, E.; Riguera, R. Reversible assembly of enantiomeric helical polymers: from fibers to gels. Chem. Sci., 20156, 246–253.

24) Freire, F.*. “El control de la helicidad en polifenilacetilenos”. Anales de Química 20141, 23-29.

23) Arias, S.; Freire, F.; Quiñoá, E.; Riguera, R. Nanospheres, Nanotubes, Toroids, and Gels with Controlled Macroscopic Chirality. Angew. Chem. Int. Ed. 201453, 13720-13724.


22) Berguerio, J.; Freire, F.*; Wendler, E. P.; Seco, J. M.; Quiñoá, E.; Riguera, R. The ON/OFF switching by metal ions of the “Sergeants and Soldiers” chiral amplification effect on helical poly(phenylacetylene)s. Chem. Sci. 20145, 2170-2176. 

21) Leiras, S.; Freire, F.*; Seco, J. M.; Quiñoá, E.; Riguera, R. Controlled modulation of the helical sense and the elongation of poly(phenylacetylene)s by polar and donor effect. Chem. Sci., 20134, 2735-2743.

20) Freire, F.; Seco, J. M.; Quiñoá, E.; Riguera, R. “Helical polymer-metal complexes: The role of metal ions on the helicity and the supramolecular architecture of poly(phenylacetylene)s”. Advances in Polymer Science, 2013262, 123-140.

19) Freire, F.; Seco, J. M.; Quiñoá, E.; Riguera, R. Nanospheres with Tunable Size and Chirality from Helical Polymer–Metal Complexes. J. Am. Chem. Soc. 2012134, 19374-19383.

18) Freire, F.; Seco, J. M.; Quiñoá, E.; Riguera, R. Chiral Amplification and Helical-Sense Tuning by Mono- and Divalent Metals on Dynamic Helical Polymers. Angew. Chem. Int. ed. 201150, 11692-11696.

17) Freire, F.; Almeida, A. M.; Fisk, J. D.; Steinkruger, J. D., Gellman, S. H. Impact of strand length on the stability of parallel β-sheets.  Angew. Chem. Int. ed. 201150, 8735-8738.

16) Freire, F.; Seco, J. M.; Quiñoá, E.; Riguera, R. “Chiral 1, 2-Diols: The assignment of their absolute configuration by NMR made easy”. Organic Letters, 2010, 12, 208-211.

15) Freire, F.; Lallana, E.; Quiñoá, E.; Riguera, R. “The stereochemistry of 1,2,3-triols revealed by 1H NMR spectroscopy: Principles and applications”. Chemistry-A European Journal,  2009, 15, 11963-11975.

14) Freire, F.;  Gellman, S. H. “Macrocyclic design strategies for small, stable parallel β-sheet scaffolds”. J. Amer. Chen. Soc 2009, 131, 7970-7972.

13) Freire, F.; Quiñoá, E.; Riguera, R. “In tube determination of the absolute configuration of α- and β-hydroxy acids by NMR via chiral BINOL borates”. Chemical Communications, 2008, 35, 4147-4149.

12) Freire, F.; Fisk, J. D.; Peoples, A. J.; Ivancic, M.; Gellman, S. H. “Diacid linkers that promote parallel β-sheet secondary structure in water.”  J. Am. Chem. Soc., 2008130, 7839-7841.

11) Hadley, E.; Witek, A. M.; Freire, F.; Peoples, A. J., Gellman, S. H. “Thermodynamic analysis of β-sheet secondary structure by backbone thioester exchange.” Angew. Chem. Int. ed. 200746, 7056-7059.

10) Freire, F.; Seco, J. M.; Quiñoá, E.; Riguera, R. “Challenging the absence of observable hydrogens in the assignment of absolute configurations by NMR: Application to chiral primary alcohols”. Chemical Communications, 2007, 14, 1456-1458.

9) Freire, F.; Calderón, F.; Seco, J. M.; Fernández-Mayoralas, Quiñoá, E.; Riguera, R. “Relative and absolute stereochemistry of secondary/secondary diols: Low-temperature 1H NMR of their bis-MPA esters”. Journal of Organic Chemistry, 2007, 72, 2297-2301.

8) Corzana, F.;  Cuesta, I.; Freire, F.; Revuelta, J.; Torrado, M.; ;Bastida, A.; Jiménez-Barbero, J.; Asensio J. L. “The pattern of distribution of amino groups modulates the structure and dynamics of natural aminoglycosides: Implications for RNA recognition.”  J. Am. Chem. Soc., 2007129, 2849-2865.

7) Freire, F.; Cuesta, I.; Corzana, F.; Revuelta, J.; González, C.; Hricovini, M.; Bastida, A.; Jiménez-Barbero, J.; Asensio J. L. “A simple NMR analysis of the protonation equilibrium that accompanies aminoglycoside recognition: Dramatic alterations in the neomycin-B protonation state upon binding to a 23-mer RNA aptamer”. Chemical Communications, 2007, 2, 174-176.

6) Lallana, E.; Freire, F.; Quiñoá, E.; Riguera, R. “The 1H NMR method for the determination of the absolute configuration of 1,2,3-prim,sec,sec-triols”. Organic Letters, 2006, 8, 4449-4452.

5) Leiro, V.; Freire, F.; Seco, J. M.; Quiñoá, E.; Riguera, R. “Absolute configuration of amino alcohols by 1H-NMR”. Chemical Communications, 2005, 44, 5554-5556.

4) Chávez, M. I.; Andreu, C.; Vidal, P.; Aboitiz, N.; Freire, F.; Groves, P.; Asensio J. L., Asensio G.; Muraki, M.; Cañada, F. J.; Jiménez-Barbero, J.; “On the importance of carbohydrate-aromatic interactions for the molecular recognition of oligosaccharides by proteins: NMR studies of the structure and binding affinity of AcAMP2-like peptides with non-natural naphthyl and fluoroaromatic residues”. Chemistry A European Journal , 2005, 11, 7060-7074.

3) Freire, F.; Quiñoá, E.; Riguera, R. “The assignment of the absolute configuration of 1,2-diols by low-temperature NMR of a single MPA derivative”. Organic Letters, 2005, 7, 4855-4858.

2) Freire, F.; Quiñoá, E.; Riguera, R. “The prediction of the absolute stereochemistry of primary and secondary 1,2-diols by1H NMR spectroscopy: Principles and applications”. Chemistry A European Journal , 2005, 11, 5509-5522.

1) Freire, F.; Quiñoá, E.; Riguera, R. “Determining the absolute stereochemistry of secondary/secondary diols by 1H NMR: Basis and applications”. JOC, 2005, 10, 3778-3790.